Signal Subspace Estimation in Hyperspectral Data for Target Detection Applications
نویسندگان
چکیده
Dimensionality Reduction (DR) is a crucial first step in many hyperspectral processing algorithms. In some applications, such as target detection, change detection and classification, it is important to preserve the information associated to rare pixels, i.e. pixels scarcely represented in the data and containing spectral components that are linearly independent of the background. This paper presents a new method, unsupervised and fully automatic (i.e., it does not depend on tuning parameters), to estimate the signal subspace addressing both the abundant and the rare vectors subspaces. Experimental results demonstrate that the proposed algorithm outperforms other state of the art algorithms and hence provides effective new options for dimensionality reduction of hyperspectral remote sensing imagery.
منابع مشابه
A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملTarget Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters
Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملA New Subspace Method for Anomaly Detection in Hyperspectral Imagery
Recently, anomaly detection has been one of the most interesting researches in hyperspectral images (HSIs) applications. Generally, anomalies in HSIs are rare pixels. The Reed–Xiaoli (RX) algorithm is a benchmark anomaly detector for HSIs, which uses the local Gaussian model generally [1]. But for RX algorithm there are two issues to be considered. First it requires the estimation of model para...
متن کامل